

Pergamon Tetrahedron Letters 42 (2001) 3905–3907

TETRAHEDRON LETTERS

Tandem aldol-transfer–Tischtschenko reaction of aldehydes and -hydroxyketones catalyzed by trimethylaluminum

Ilkka Simpura* and Vesa Nevalainen

Department of Chemistry, *PO Box* ⁵⁵ (*A*.*I*. *Virtasen aukio* 1), *University of Helsinki*, *FIN*-00014 *Helsinki*, *Finland* Received 22 September 2000; revised 26 March 2001; accepted 6 April 2001

Abstract—A novel tandem aldol-transfer–Tischtschenko reaction has been developed. It provides a simple one-step synthetic route to diolmonoesters from β -hydroxyketones and aldehydes. The reaction is catalyzed by trimethylaluminum. \odot 2001 Elsevier Science Ltd. All rights reserved.

Nucleophile-transfer reactions possess great potential for organic transformations.^{1–6} They are analogous to hydride-transfer reactions (hydride as a nucleophile) found on the basis of pioneering work by Meerwein, Ponndorf, Verley and Oppennauer¹ in the beginning of the 20th century. During recent years, several publications considering new transfer-reactions of nucleophiles other than hydrides have appeared. Inoue et al. have described the use of aluminum and titanium based promotors (stoichiometric amounts) for HCN transfer from acetonecyanohydrin to aldehydes.² They also report the use of lanthanoid alkoxides for the same reaction in catalytic amounts.3 Maruoka et al. have published an alkenyl-transfer reaction (to aldehydes) mediated by an aluminum-*o*,*o'*-biphenyldioxy species⁴ and zirconium alkoxides.5 Analogous allyl-transfer reactions have recently been reported by Nokami.6

The Tischtschenko reaction offers an efficient way to synthesize esters directly from aldehydes through a reduction–oxidation reaction sequence.7 This reaction, which is usually carried out using aluminum alkoxides as a catalyst, has been studied in detail by several groups.8 The intramolecular Tischtschenko reaction has been found to be a simple, mild and *anti*-stereoselective method for the reduction of the carbonyl group of -hydroxycarbonyl compounds.9

Recently we have described a novel aldol-transfer reaction by which one half of a self-aldol adduct of a ketone is transferred to an aldehyde (the other half is released as free ketone).¹⁰ In order to explore the utility of the aldol-transfer reaction we developed the coupled aldol-transfer–Tischtschenko reaction shown in Scheme 1. This technique allows direct conversion of the intermediate products of the aldol-transfer reaction (**A**, Scheme 2) to the corresponding monoacylated diol of *anti*-stereochemistry (**B**, Scheme 2). Various aldehydes together with 4-hydroxy-4-methyl-2-pentanone were used as a test system. The results are summarized in Table $1.^{11}$

In order to choose conditions for the reactions summarized in Table 1, a basic assumption was that it should be possible to achieve a high aldehyde to monoacylated diol conversion efficiency at room temperature with a low amount of catalyst. Therefore, five experiments (entries 1–5, Table 1, conversion of butanal to 2-

Scheme 1. Tandem aldol-transfer–Tischtschenko reaction.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: $S0040 - 4039(01)00579 - 2$

^{*} Corresponding author.

Scheme 2. Possible transition state for the formation of the monoacylated diol from the preformed aldol and aldehyde.

Table 1. The catalytic tandem aldol-transfer–Tischtschenko reaction of aldehydes

Entry	R	Aldehyde $(equiv.)^a$	$Me3Al molo/0a$	Rxn time (h)	Yield $(\%)^{a,b}$
	1-Propyl			22	35
2	1-Propyl			22	48
3	1-Propyl		10	22	56 ^c
4	1-Propyl		10	22	$80^{d,e}$
5	1-Propyl			138	Trace
6	Methyl		10	22	68 ^f
	Ethyl		10	22	73 ^g
8	1-Heptyl		10	22	79 ^c
9	2-Propyl		10	22	59 ^e
10	2-Pentyl		10	22	81
11	c -Hexyl		10	22	74°
12	1-(1-Bromo)heptyl		10	22	0 ^h

^a Yield of ester relative to 4-hydroxy-4-methyl-2-pentanone.

^b Isolated by flash chromatography.

^c Transester formed in small amounts.

^d Ester–transester in ca. 5:1 ratio.

^e Only the *anti*-diastereomer of the corresponding diol was observed (¹H NMR and ¹³C NMR).

^f Isolated by distillation.

^g Ester–transester in ca. 3:2 ratio.

^h Not detectable.

hydroxy-4-heptylbutanoate) with different reaction times were conducted. The amount of catalyst was varied in the range of $1-10$ mol% (entries 1, 4 and 5, Table 1). The results indicated that in order to reach high conversion 10 mol% of Me₃Al is needed. The excess aldehyde accelerates the formation of monoacylated diol (entries 3 and 4, Table 1). In every reaction, small amounts of the corresponding ester (i.e. butylbutyrate) and aldol adduct (i.e. 4-hydroxy-heptan-2 one) are formed as side-products.

A plausible reaction mechanism is based on a two-step reaction: at first an enolate of acetone is transferred to the aldehyde via an aldol-transfer reaction to give intermediate **A** (Scheme 2).10 In the next step adduct **A** reacts with the second equivalent of aldehyde potentially forming a hemiacetal adduct **B** (Scheme 2). The intramolecular hydride-transfer reaction taking place in **B** reduces the carbonyl group of the ketone moiety.

The reaction (Scheme 1) was studied with eight aliphatic aldehydes as summarized in Table 1 (entries 4 and 6–12). All of these aldehydes gave good yields. The lowest yield was observed in the case of isobutyric aldehyde (59%) and acetaldehyde (68%) (entries 6 and 9, Table 1). The yield when acetaldehyde was used as a substrate (entry 6) cannot be compared with the yields of other aldehydes because the product was isolated by distillation (instead of flash chromatography). Interestingly α -bromo-octanal (entry 12, Table 1) appeared to be inert under these conditions. The lack of reactivity is potentially due to either steric hindrance or increased acidity of the α -hydrogen of the aldehyde precursor.

The yield of diolmonoester increases with the lengthening of the carbon chain in the case of linear aldehydes (entries 4, 6, 7 and 11, Table 1) except in the case of octanal which gave a slightly lower yield than butanal.

Two reaction products were hydrolyzed to the corresponding diols in order to determine the relative stereochemistry (entries 4 and 9, Table 1). Only the *anti*diastereomer was observed in both cases when NMR spectra of diols were compared with the literature values.¹²

Herein, we have introduced a novel tandem aldol-transfer–Tischtschenko reaction for the one-pot synthesis of $diolmonoesters from β -hydroxyketones and aldehyde$ using diacetonealcohol as a model compound. The simplicity and generality of the reaction makes it an attractive alternative for existing methods. Further studies on the utilization of the aldol-transfer technology10 are in progress.

References

- 1. (a) Meerwein, H.; Schmidt, R. *Liebigs Ann*. *Chem*. **1925**, ⁴⁴⁴, 221; (b) Verley, A. *Bull*. *Soc*. *Chim*. *Fra*. **1925**, 37, 537; (c) Ponndorf, W. *Angew*. *Chem*. **1926**, 39, 138.
- 2. Mori, A.; Kinoshita, K.; Osaka, M.; Inoue, S. *Chem*. *Lett*. **1990**, 1171.
- 3. Mori, A.; Osaka, M.; Inoue, S. *Chem*. *Lett*. **1993**, 375.
- 4. Ooi, T.; Miura, T.; Maruoka, K. *J*. *Am*. *Chem*. *Soc*. **1998**, 120, 10790.
- 5. Ooi, T.; Takaya, K.; Miura, T.; Maruoka, K. *Synlett* **2000**, 69.
- 6. (a) Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S. *J*. *Am*. *Chem*. *Soc*. **1998**, 120, 6609; (b) Sumida, S.; Ohga, M.; Mitani, J.; Nokami, J. *J*. *Am*. *Chem*. *Soc*. **2000**, 122, 1310.
- 7. Tischtschenko, W. *Chem*. *Zentralbl*. **1906**, ⁷⁷, 1309.
- 8. (a) Hawkings, E. G. E.; Long, D. J. F.; Major, F. J. *J*. *Chem*. *Soc*. **1955**, 1462; (b) Child, W. C.; Adkins, H. *J*. *Am*. *Chem*. *Soc*. **1923**, 47, 789; (c) Villani, F. J.; Nord, F. F. *J*. *Am*. *Chem*. *Soc*. **1947**, 67, 2605; (d) Lin, L.; Day, A. R. *J*. *Am*. *Chem*. *Soc*. **1952**, 74, 5133.
- 9. (a) Evans, D. A.; Hoveyda, A. H. *J*. *Am*. *Chem*. *Soc*. **1990**, 112, 6449; (b) Umekawa, Y.; Sagagushy, S.; Nishiyama, Y.; Ishii, Y. *J*. *Org*. *Chem*. **1997**, 62, 3409; (c) Gillespie, K. M.; Munslow, I. J.; Scott, P. *Tetrahedron Lett*. **1999**, 40, 9371; (d) Mascarenhas, C. M.; Miller, S.

P.; White, P. S.; Morken, J. P. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **2001**, 40, 601.

- 10. Simpura, I.; Nevalainen, V. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **2000**, 39, 3422.
- 11. Typical procedure for the tandem aldol-transfer– Tischtschenko reaction is as follows: trimethylaluminum in toluene (0.2 mmol, 0.1 ml) was added at room temperature under argon to dry CH_2Cl_2 (1 ml). To the solution was simultaneously added butanal (6 mmol, 0.54 ml, 3 equiv.) and 4-hydroxy-4-methyl-2-pentanone (2 mmol, 0.25 ml, 1 equiv.) by syringe. After stirring for 22 hours, the reaction mixture was poured into aqueous HCl solution (0.5 M, 5 ml) and extracted with diethylether (3×10) ml). The combined extracts were dried over $MgSO₄$. Evaporation of the solvent and purification of the residual oil by flash chromatography gave 2-hydroxy-4-heptylbutanoate (324 mg, 1.6 mmol) as colourless oil. ¹H NMR (200 MHz, CDCl₃, 20°C, CHCl₃, 7.27 ppm): δ 5.10-4.97 (m, 1H, CH), 3.65–3.56 (m, 1H, CH), 2.28 (t, $J=7.5$ Hz, 2H, CH₂), 1.7–1.2 (m, 8H, 4CH₂), 1.13 (d, *J*=6.2 Hz, 3H, CH₃), 0.96 (t, *J*=7.3 Hz, 3H, CH₃) 0.87 $(t, J=7.1 \text{ Hz}, 3H, CH_3);$ ¹³C NMR (50.3 MHz, CDCl₃): 174.5, 71.2, 63.2, 44.6, 36.9, 36.3, 22.8, 18.7, 18.5, 13.8, 13.6.
- 12. (a) Heathcock, C. H.; Kiyooka, S.; Blumenkopf, T. A. *J*. *Org*. *Chem*. **1984**, 49, 4214; (b) Anwar, S.; Davis, A. P. *J*. *Chem*. *Soc*., *Chem*. *Commun*. **1986**, 11, 831.